SAFETY AND BUILDINGS DIVISION Plumbing Product Review P.O. Box 2658 Madison, Wisconsin 53701-2658 TTY: Contact Through Relay Jim Doyle, Governor Richard J. Leinenkugel, Secretary October 16, 2008 ACCESS BUSINESS GROUP (FORMERLY AMWAY CORP.) STEPHEN VER STRAT 7575 FULTON ST EAST ADA MI 49355 Re: Description: WATER TREATMENT DEVICE - ACTIVATED CARBON/ULTRA VIOLET Manufacturer: ACCESS BUSINESS GROUP Product Name: eSPRING WATER PURIFIER Model Number(s): 10-0185 USING THE 10-0186 CARTRIDGE Product File No: 20070465 The specifications and/or plans for this plumbing product have been reviewed and determined to be in compliance with chapters Comm 82 through 84, Wisconsin Administrative Code, and Chapters 145 and 160, Wisconsin Statutes. The Department hereby issues an approval based on the Wisconsin Statutes and the Wisconsin Administrative Code. This approval is valid until the end of October 2013. This approval supersedes the approval issued on October 22, 2002 under product file number 20020350. This approval is contingent upon compliance with the following stipulation(s): - This product has undergone sufficient testing to document the product's ability to reduce only those contaminants and/or substances as specified in this approval letter when the product is installed and maintained in strict accordance with the manufacturers published instructions. - ➤ Where the Department of Natural Resources (DNR) has jurisdiction, a written approval may be required prior to installation of this product in a water supply system to reduce the concentration of a contaminant that exceeds the primary drinking water standards contained in ch. NR 809, Wis. Admin. Code, the enforcement standards contained in ch. NR 140, Wis. Admin. Code, or for a water supply system that is subject to a written advisory opinion by the DNR. For more information contact the DNR Section of Private Water Systems, P.O. Box 7921, Madison, WI 53707, telephone (608) 266-3415. - ➤ If these approved devices are modified or additional assertions of function or performance are made, then this approval shall be considered null and void, unless the change is submitted to the department for review and the approval is reaffirmed. - > These devices will only reduce the concentration of volatile organic chemicals at water outlets that are served by the devices. There are dermal (skin) absorption and inhalation exposure risks associated with volatile organic chemicals. Therefore, using point-of-use devices such as these will not protect all routes of potential exposure. Potentially hazardous exposures to volatile organic chemicals will remain possible at unprotected outlets, particularly hot water outlets (e.g. bathing, showering, clothes washing or dish washing). - If, by way of reputable water analyses, a water supply is known to contain unsafe levels of volatile organic chemicals, then all the water entering the residence must be treated at the point-of-entry using an approved water treatment device to address all potential routes of exposure. - > Do not use this device with water that is microbiologically unsafe, or of unknown quality, without adequate point-of-entry (i.e. whole house) disinfection before this device. SBD-10564-E (N.10/97) File Ref: 07046501.DOC Access Business Group October 16, 2008 Page 2 of 6 Product File No.: 20070465 These devices will only reduce the concentration of cysts/oocysts at water outlets that are served by the devices. Therefore, using point-of-use devices such as these will not protect all routes of potential exposure. Potentially hazardous exposures to cysts/oocysts will remain possible at unprotected outlets. The presence of cysts/oocysts strongly suggests that other pathogens (e.g. bacteria, virus) may also be present. If, by way of reputable water analyses, a water supply is known to contain cysts/oocysts, then all the water entering the residence must be treated at the point-of-entry, using an approved water treatment device, to address all potential routes of exposure thereby providing a biologically safe water supply. - This device is not intended for the treatment of water that has an obvious or intentional contamination source (e.g. a well known to be microbiologically unsafe, raw sewage), nor is this device intended to convert wastewater to drinking water. - If the treatment components of this device (e.g. replacement cartridge) are replaced with anything other than those originally approved for use with this device, then this approval shall immediately be considered null and void. Based on testing data submitted to and reviewed by the department, this approval recognizes that this plumbing product will reduce the concentration of contaminants as specified on pages 1 through 6 of this letter. ### AESTHETIC CONTAMINANT REDUCTION CAPABILITIES PRODUCT FILE NUMBER 20070465 TABLE 1 OF 6 Flow Rate: 3.4 Liters per minute (Lpm) [0.9 gallon per minute (gpm)] Capacity: 4,997 Liters (L) [1,320 gallons (gals.)] for free chlorine reduction. For particulate reduction, the capacity is dependent on the type and quantity of particulate matter present in the untreated water; the need for maintenance may be indicated by a significant decrease in flow rate. | Tested Contaminant | Influent Challenge (mg/L)*,1 | |--------------------------------|------------------------------| | Chlorine (free) | 2.0 ± 10% | | Particulates (0.5 to < 1.0 μm) | ≥ 1.0 x 10 ⁴ #/mL | **Other Conditions:** the contaminant reduction performance capabilities displayed for Table 1 of 6 were verified by testing conducted in accordance with NSF *International* Standard 42. To qualify for free chlorine reduction, the device must reduce the influent challenge concentrations by $\geq 50\%$. To qualify for particulate reduction, Class I, the device must reduce the influent challenge concentrations by $\geq 85\%$. 1 = milligrams per liter (mg/L) are equivalent to parts per million (ppm) #/mL = particles per milliliter ≥ = greater than or equal to \pm = plus or minus * = unless otherwise specified < = less than μm = micrometers Page 3 of 6 Product File No.: 20070465 ### HEALTH EFFECTING INORGANIC CONTAMINANT REDUCTION CAPABILITIES PRODUCT FILE NUMBER 20070465 TABLE 2 OF 6 Flow Rate: 3.4 Liters per minute (Lpm) [0.9 gallon per minute (gpm)] Capacity: 4,997 Liters (L) [1,320 gallons (gals.)]. For asbestos reduction, the capacity is dependent on the type and quantity of particulate matter present in the untreated water; the need for maintenance may be indicated by a significant decrease in flow rate. | Tested Contaminant | Influent Challenge
Concentration (mg/L [*]) ¹ | Max. Permissible Effluent Concentration (mg/L [*]) ¹ | |--|---|---| | Asbestos fibers (> 10 μm in length) | $1.0 \times 10^7 \text{ to } 1.0 \times 10^8$ | ≤ 1.0% of challenge | | Lead (Pb ⁺²) ² | 0.15 ± 10% | 0.010 | | Mercury (Hg ⁺²) ² | 0.006 ± 10% | 0.002 | **Other Conditions:** the contaminant reduction performance capabilities displayed for Table 2 of 6 were verified by testing conducted in accordance with NSF *International* Standard 53. To qualify for a specific contaminant reduction claim, the system shall reduce the influent challenge concentrations such that all effluent concentrations are ≤ the maximum permissible effluent concentrations shown in table 2 of 6. 1 = milligrams per liter (mg/L) are equivalent to parts per million (ppm) 2 = metals are tested at pH 6.5 and pH 8.5 * = unless otherwise specified ≤ = less than or equal to \pm = plus or minus > = greater than F/L = fibers per liter ## HEALTH EFFECTING ORGANIC CONTAMINANT REDUCTION CAPABILITIES VIA CHLOROFORM SURROGATE PRODUCT FILE NUMBER 20070465 TABLE 3 OF 6 Flow Rate: 3.4 Liters per minute (Lpm) [0.9 gallon per minute (gpm)] Capacity: 4,997 Liters (L) [1,320 gallons (gals.)]. | Tested Contaminant | Influent Challenge (μg/L) ¹ | |-----------------------------|--| | Alachlor | 50 | | Atrazine | 100 | | Benzene | 81 | | Carbofuran | 190 | | Carbon tetrachloride | 78 | | Chlorobenzene | 77 | | Chloropicrin | 15 | | 2,4-D | 110 | | Dibromochloropropane (DBCP) | 52 | | o-Dichlorobenzene | 80 | | p-Dichlorobenzene | 40 | | 1,2-Dichloroethane | 88 | | 1,1-Dichloroethylene | 83 | | cis-1,2-Dichloroethylene | 170 | | trans-1,2-Dichloroethylene | 86 | | 1,2-Dichloropropane | 80 | | cis-1,3-Dichloropropylene | 79 | | Dinoseb | 170 | | Endrin | 53 | | Ethylbenzene | 88 | | Ethylene dibromide (EDB) | 44 | | Haloacetonitriles (HAN): | - | | Bromochloroacetonitrile | 22 | | Dibromoacetonitrile | 24 | | Dichloroacetonitrile | 9.6 | | Trichloroacetonitrile | 15 | Page 4 of 6 Product File No.: 20070465 # HEALTH EFFECTING ORGANIC CONTAMINANT REDUCTION CAPABILITIES VIA CHLOROFORM SURROGATE PRODUCT FILE NUMBER 20070465 TABLE 3 OF 6 (continued) Flow Rate: 3.4 Liters per minute (Lpm) [0.9 gallon per minute (gpm)] Capacity: 4,997 Liters (L) [1,320 gallons (gals.)]. | Tested Contaminant | Influent Challenge (μg/L) ¹ | |--|--| | Haloketones (HK): | - | | 1,1-Dichloro-2-propanone | 7.2 | | 1,1,1-Trichloro-2-propanone | 8.2 | | Heptachlor | 25 | | Heptachlor epoxide | 10.7 | | Hexachlorobutadiene | 44 | | Hexachlorocyclopentadiene | 60 | | Lindane | 55 | | Methoxychlor | 50 | | Pentachlorophenol | 96 | | Simazine | 120 | | Styrene | 150 | | 1,1,2,2-Tetrachloroethane | 81 | | Tetrachloroethylene | 81 | | Toluene | 78 | | 2,4,5-TP (silvex) | 270 | | Tribromoacetic acid | 42 | | 1,2,4-Trichlorobenzene | 160 | | 1,1,1-Trichloroethane | 84 | | 1,1,2-Trichloroethane | 150 | | Trichloroethylene | 180 | | Trihalomethanes (chloroform surrogate) | 300 | | Xylenes (total) | 70 | **Other Conditions:** the contaminant reduction performance capabilities displayed for Table 3 of 6 were verified by testing conducted in accordance with NSF *International* Standard 53. To qualify for the reduction of the organic contaminants listed above, the device must reduce the influent challenge concentration of chloroform at 300 μ g/L \pm 10% at each sample point by \geq 95%. $^{1 = \}text{micrograms per liter } (\mu g/L) \text{ are equivalent to parts per billion (ppb)}$ ^{≥ =} greater than or equal to Page 5 of 6 Product File No.: 20070465 ### HEALTH EFFECTING ORGANIC CONTAMINANT REDUCTION CAPABILITIES PRODUCT FILE NUMBER 20070465 TABLE 4 OF 6 Flow Rate: 3.4 Liters per minute (Lpm) [0.9 gallon per minute (gpm)] Capacity: 4,997 Liters (L) [1,320 gallons (gals.)] | Tested Contaminant | Influent Challenge
Concentration (µg/L [*]) ¹ | Max. Permissible Effluent Concentration (μg/L [*]) ¹ | |---|---|---| | Alachlor | 40.0 ± 10% | 2.0 | | Atrazine | 9.0 ± 10% | 3.0 | | Chlordane | 40.0 ± 10% | 2.0 | | Dibromochloropropane | 4.0 ± 10% | 0.2 | | Ethylene dibromide | 1.0 ± 10% | 0.05 | | Heptachlor epoxide | 4.0 ± 10% | 0.2 | | Lindane | 2.0 ± 10% | 0.2 | | Methyl tert-butyl ether (MtBE) | 15.0 ± 20% | 5.0 | | Methoxychlor | 120 ± 10% | 40 | | Polychlorinated biphenyls (PCBs) ³ | 10.0 ± 10% | 0.5 | | Toxaphene | 15.0 ± 10% | 3.0 | | Total Trihalomethanes (TTHMs)4 | 450 ± 20% | 80 | | 2,4-D (2,4-dichlorophenoxyacetic acid) | 210 ± 10% | 70 | | 2,4,5-TP (Silvex) | 150 ± 10% | 50 | **Other Conditions:** the contaminant reduction performance capabilities displayed for Table 4 of 6 were verified by testing conducted in accordance with NSF *International* Standard 53. To qualify for a specific contaminant reduction claim, the system shall reduce the influent challenge concentrations such that all effluent concentrations are ≤ the maximum permissible effluent concentrations shown in table 4 of 6. 1 = micrograms per liter (µg/L) are equivalent to parts per million (ppm) 2 = metals are tested at pH 6.5 and pH 8.5 * = unless otherwise specified ≤ = less than or equal to **±** = plus or minus > = greater than **F/L** = fibers per liter **4** = as chloroform **3** = Aroclor 1260 ### AESTHETIC BIOLOGICAL CONTAMINANT REDUCTION CAPABILITIES PRODUCT FILE NUMBER 20010224 TABLE 5 OF 6 Flow Rate: 3.4 Liters per minute (Lpm) [0.9 gallon per minute (gpm)] Maintenance interval: 4,997 Liters (L) [1,320 gallons (gals.)] or one year, whichever occurs first | Tested Contaminant | Influent Challenge (cells/mL) | |--|-------------------------------------| | Saccharomyces cerevisiae (ATCC# 18824) | $1.0 \times 10^4 - 1.0 \times 10^5$ | **Other Conditions:** the contaminant reduction performance capabilities displayed for Table 5 of 6 were verified by testing conducted in accordance with NSF *International* Standard 55. To qualify for "Class B" microbial reduction performance the device must cause the geometric mean of all S. cerevisiae counts on influent samples minus the geometric mean of counts on all effluent samples shall demonstrate that a log reduction ≥ than the reduction caused by a dose of 16 mJ/cm² was achieved as calibrated in annex B of NSF Standard 55. Page 6 of 6 Product File No.: 20070465 ### HEALTH EFFECTING BIOLOGICAL CONTAMINANT REDUCTION CAPABILITIES PRODUCT FILE NUMBER 20010224 TABLE 6 OF 6 Flow Rate: 3.4 Liters per minute (Lpm) [0.9 gallon per minute (gpm)] Maintenance interval: 4,997 Liters (L) [1,320 gallons (gals.)] or one year, whichever occurs first | Tested Contaminant | Influent Challenge | Log ₁₀ Inactivation (reduction %) | |-----------------------------------|--------------------------------------|--| | Cryptosporidium parvum (NSF) | 1.25 x 10 ⁵ counts per mL | > 3.0 (> 99.9%) | | Klebsiella terrigena (ATCC 33257) | 1.82 x 10 ⁷ cfu/100 mL | > 6.0 (> 99.9999%) | | Poliovirus Lsc1 (ATCC VR-59) | 4.97 x 10 ⁸ pfu/L | > 4.0 (> 99.99%) | | Rotavirus SA-11 (ATCC VR-899) | 3.03 x 10 ⁷ pfu/L | > 4.0 (> 99.99%) | | MS-2 Coliphage (ATCC 15997-B1) | 1.60 x 10 ⁵ pfu/mL | > 3.0 (>99.9%) | Other Conditions: the contaminant reduction performance capabilities displayed for Table 6 of 6 were verified by testing conducted in accordance with U.S. Environmental Protection Agency's Task Force Report, *Guide Standard and Protocol for Testing Microbiological Water Purifiers* (Federal Register, May 26, 1986). The testing was performed by NSF *International*, or under the direct auspices of NSF *International*. New lamps, and lamps that had been pre-aged to 150% of their rated service life, were evaluated for all tests. These devices are approved for treating microbiologically unsafe water, however these devices are not intended for treating water that has an obvious contamination source, such as raw sewage; nor are these devices intended to convert wastewater to microbiologically safe drinking water. In addition to the microbiological testing, the UV dose being supplied by these devices was also evaluated using MS-2 bacteriophage as a biological actinometer. These devices caused a log reduction greater than the reduction caused by an average UV dose of 42 mJ/cm². It is important to know that treating microbiologically unsafe water at a single, or multiple, points of use may leave other potential routes of exposure unprotected (e.g. bathing, showering, wall hydrants). counts per mL = counts per milliliter pfu/L = plaque forming units per liter mJ/cm² = millijoules per square centimeter **cfu/100 mL** = colony forming units per 100 mL > = greater than This device was tested under controlled laboratory, or field, conditions. The actual performance of this device for a specific end use installation will vary from the tested conditions based on local factors such as water pressure, water temperature and water chemistry. The department is in no way endorsing this product or any advertising, and is not responsible for any situation that may result from its use. Sincerely, Glen W. Schlueter Engineering Consultant-Plumbing Product Reviewer Bureau of Integrated Services Safety and Buildings Division Department of Commerce (608) 267-1401 **Phone**(608) 267-9566 **Fax**gschlueter@wi.gov **Email**8:00A – 4:30P CT **Work Hours** GWS:gws